
Software Engineering Topic 1 Page 1

Software Engineering: A Definition

What is software engineering?

“…The establishment and use of sound engineering principles in
order to obtain economically, software that is reliable,
maintainable and works efficiently on real machines”.

What have we been doing so far?

In simple terms most of us have simply been programming. That is, given a problem
amenable to a software solution, most of us immediately delve straight into writing
the solution (or the perceived solution) using the software tools and programming
languages to hand, or ones that we are familiar with, with the following
shortcomings.

• Little or no analysis of the problem is performed.
• Very little effort is expended on designing software structure or architecture.
• Little effort is made to validate or test our software in a rigorous manner.
• Maintenance is something that is ignored until later, hopefully indefinitely

until you have left the company and it becomes somebody else’s problem.

In essence we have been hacking.

“…But what’s wrong with that, we got it to work didn’t we?”

Ok, so you got it to work, this time. But what happens when the problem is not trivial
or small and cannot be comprehended by one person. Perhaps it will involve a team
of 20+ programmers. What happens when the deadlines are too short for one person
to ‘wing it’ and come up with a solution that is (just) acceptable to the customer (or
lecturer marking it). That’s when hacking starts to fail and software engineering is
required.

So What Does Software Engineering Involve?

Apart from the above definition, software engineering is a set of analysis, design,
programming, testing and maintenance techniques that have evolved over a number
of decades to facilitate the creation, testing and maintenance of complex, high quality
software.

It has been shown that such techniques, used correctly lead to the creation of
software which is more likely to meet the needs and specification of its users and
more likely to be produced on time and within budget. Such software is also likely to
prove itself more reliable and maintainable than any “hacked” software.

Paul
analysis,

Paul
design,

Paul
programming,

Paul
testing

Paul
maintenance

Paul
hacking.

Paul
Little

Paul
no

Paul
analysis

Paul
designing

Paul
validate

Paul
test

Paul
Maintenance

Paul
wing it’

Paul
of its users

Paul
specification

Paul
produced on time

Paul
within budget.

Paul
reliable

Paul
maintainable

Software Engineering Topic 1 Page 2

 I don’t really need to learn any new techniques – Do I?

If you question the need for such techniques and think that you can “wing it” and
survive, take a look at this graphical presentation shown below, which demonstrates
the problems software production faced in the 70’s when software engineering was
rarely used.

This pie chart was produced by the American Department of Defence (DoD) and
summarises the results of government contracts for software development projects
delivered in the late 70’s and early 80’s.

Now imagine that you were the customer and the developer was say Ford Motor
company and you were purchasing 100 ford Mondeos, how would you feel if only 2
of them worked as delivered? How could this have happened? Some common
excuses are given below

• Incorrectly Analysed or specified Systems. Maybe the developer never
consulted with the user in an attempt to really understand what they
wanted. Of if they did, did they make an attempt to keep up with the
possibly changing needs of the user?

• The project was mismanaged and could not be delivered on time.
• The product was not designed correctly to implement the specification.
• The product was out of date or too expensive by the time it was delivered.
• The product was not adequately tested prior to release.

Delivered
but Never
Used 47%

Paid for but
not Delivered
29%

Used but
Later
Abandoned
19%

Usable after
Changes 3%

Could be
used as
delivered 2%

Paul
Analysed

Paul
specified

Paul
mismanaged

Paul
designed

Paul
correctly

Paul
not

Paul
out of date

Paul
expensive

Paul
too

Paul
tested

Paul
not

Paul
adequately

Paul
user

Paul
really

Paul
understand

Paul
keep up

Paul
changing

Software Engineering Topic 1 Page 3

Haven’t we progressed since then?

In theory yes, but in practice, software is still not being developed to the same high
standards as other engineering disciplines such as electrical, mechanical or civil. To
give you some indication, here is a list of failed software developments to have
grabbed the news headlines in the late 80’s/90’s

Classic Software Failures of the Late 80s- 90’s

Mars orbitor 1999: This joint NASA/European Space Agency project crashed onto the surface
of mars (instead of orbiting it) because NASA used imperial while ESA used metric.
Ariane 5: It’s maiden flight on June 4, 1996 ended in the launcher being exploded because of a
chain of software failures.
(See: http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html for details)
Taurus: A planned automated transaction settlement system for the London Stock Exchange.
The project was cancelled in 1993 after having lasted more than five years. The project cost was
around £75m; the estimated loss to customers was around £450m; and the damage to the
reputation of the London Stock Exchange was huge. (See Crash by T.Collins)
Nimrod AWACS system: In the UK, the development of a Nimrod based Advanced early
warning defence project was abandoned after countless 10’s of millions of pounds of tax payers
money had been spent on the project. It was estimated that due to mismanagement and slipping
time-scales, the project would have been out-of-date by the time it had been introduced.
Furthermore, the cost of making it work was greater than the cost of buying an American based
system which already worked.
Denver: A baggage handling system where a complex system, involving around 300 computers,
overran so badly as to prevent the airport opening on time, and then turned out to be extremely
‘buggy’ and cost almost another 50% of its original budget of nearly $200m to make it work.
London Ambulance System: Where because of a succession of software engineering failures,
especially defects in project management, a system was introduced that failed twice in the
autumn of 1992. Although the monetary cost, at 'only' about £9m, was small by comparison with
the other examples, it is believed that people died who would not have died if ambulances had
reached them as promptly as they would have done without this software failure. (See “Crash” by
Tony Collins)
Therac-25: Between 1985 and 1987 six people (at least) suffered serious radiation overdoses
because of software-related malfunctions of the Therac-25 radiation therapy machine. Three of
them are thought to have died of the overdoses. An important root cause was a lack of quality
assurance, which led to an over-complex, inadequately tested, under-documented system being
developed.
(See: http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_1.html for full report)
Stanstead Airport (If I recall correctly) is still trying to develop a radar tracking system to
monitor aircraft flying over UK and much of Europe. It is behind schedule and over budget.
Passport and N.I/Benefits Office. The backlog due to the issuing of new passports lead to lost
holidays and compensation claims, plus over 1500 bugs were reported in the NI computer system
Year 2000 Bug: How much do you think this will end up costing?
For more modern examples, take a look at
http://www.baselinemag.com/print_article/0,3668,a=35839,00.asp

Paul
http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_1.html

Paul
electrical,

Paul
mechanical

Paul
civil.

Software Engineering Topic 1 Page 4

Aims and Objectives of this Course

The aim of this course is to teach the student how to Analyse, design and engineer
software. It is not predominantly about programming or languages, although that is
an integral part of the engineering process. Rather, software engineering is a set of
techniques that will lead to the design of well-engineered, reliable and maintainable
software systems that can evolve to meet the customer’s present and future needs.

Software

Where does software fit into this design and engineering process? A textbook
description of software might take the following form. Software is:

(1) Instructions (computer programs) that when executed provide the desired
function and performance.

(2) Data structures that enable the programs to adequately manipulate
information e.g. databases, spreadsheets etc.

(3) Documents that describe the operation and use of the programs.

A Comparison of Software Behaviour vs. that of other Engineered Products

To gain an understanding of software and ultimately an understanding of software
engineering, it is important to examine the characteristics of software that make it
different from other things that human beings build and engineered.

1. Software products do not have to abide by, and cannot be influenced by the

laws of nature such as physics or chemistry.

In effect this means that the usual metrics i.e. methods of measurement and
assessment, that have been used to test the quality or functionality of say a
mechanical or electrical product cannot be applied to a piece of software. In
particular, you cannot, for instance use a Micrometer or an Oscilloscope to assess the
quality, precision or accuracy of a piece of software.

Furthermore, it is possible to ‘mash’ together pieces of software to make the product
work because there are no laws of physics to prevent it falling over. Try doing the
same things with say a bridge and it’ll end in tears and a lawsuit.

Paul
evolve

Paul
present

Paul
future

Paul
Instructions

Paul
Data

Paul
structures

Paul
Documents

Paul
mash’

Software Engineering Topic 1 Page 5

2. Software Quality is hidden from its Users.

Generally speaking, the customer only gets to see the “outside” or “users eye view”
of the final software. The inner workings of software are not amenable to
examination. The individual software components and the boundaries/interfaces
between them are hidden. This is because the compiler has translated the original
design into something completely different comprising 0’s and 1’s stored as pits on a
CD ROM. Reverse engineering a software product to assess it’s initial design quality
is virtually impossible.

This is perhaps why hackers have existed for so long, as it’s difficult to assess the
quality of the product they produce. To them the motto is

“…As long as the product works, who cares if it’s good
or bad?”

At the end of the day, the customer cannot tell whether they have been presented
with a well-engineered product, or a “lash-up” put together by cowboys.
Furthermore, once delivered, the quality of the product can only be assessed in terms
of its functionality. Software contains no “user-serviceable” parts and nothing is
interchangeable.

Contrast this with a motorcar for example where you can lift the lid and
examine/replace the components such as engines and gearboxes, because the
interfaces between the components are clearly identified (they are loosely coupled)
and each has a well-defined and distinct role (they are highly cohesive).

3. Software is often discreet in its behaviour

In many ways software is inherently unstable as it often behaves like a multi-way
switch, producing radically different outputs/results in response to even small
changes in its data. This kind of behaviour makes testing particularly difficult.

For example the behaviour of a medical diagnosis program designed to ask for data
about patients symptoms might come up with a completely different diagnosis if it
knew the sex of the patient.

Mechanical devices by comparison are more linear, exhibiting predictable and well-
defined behaviour throughout their range of acceptable inputs. There are few, if any
discrete jumps in behaviour.

In summary, software’s behaviour is not governed or restricted by any ‘natural’ rules
in the sense that a physical object is. In essence this means that the ability of
software to produce either sensible or incredibly stupid results is limited only by the
imagination and creativity (or stupidity) of the designer or programmer. There are no
limits to what can be achieved.

Paul
outside”

Paul
users eye view”

Paul
components

Paul
boundaries/interfaces

Paul
unstable

Paul
multi-way
switch,

Paul
linear,

Paul
up”

Paul
cowboys.

Paul
lash-

Paul
functionality.

Paul
discrete jumps

Paul
not governed

Paul
natural’

Paul
sensible

Paul
incredibly

Paul
stupid

Software Engineering Topic 1 Page 6

4. Mechanical devices often recover automatically from overloads

For example, simply lifting off the throttle can cure over-revving a car. The engine
will then return to a steady state. Once software is exposed to an overload, or data
that is outside its specified range, it often falls into a heap requiring a reset to
recover. This places a huge burden on the designer to include additional software to
check the validity of all data and reject it before it gets processed.

One estimate is that 80-90% of all software written is there to validate and deal with
user entered and intermediate (i.e. the results of calculations) data. Only 10-20% of
code is written to actually implement the specification.

5. Software, until recently, could not be proven to work

More and more software is now being used in Safety-Critical applications, such as
fly-by-wire aircraft or nuclear reactors. Unlike mechanical or electrical circuits for
which there exists well-known equations for predicting and proving component and
system behaviour (and indeed failure), no such metrics existed until recently to prove
that software had been implemented in accordance with a specfication.

New formal mathematical techniques such as ‘Z’ and VDM, based on 1st order
predicate calculus (complex set theory in simple terms) are only just emerging as a
technique for specifying software requirements, but these techniques are complex.
Furthermore, the uptake in their has been slow, even in fields such as safety critical
systems where it could be argued that they would have most benefit. There are a
number of reasons for this

1. Most safety critical software systems fail because the system has been
incorrectly specified, miss-understood or incorrectly implemented. In order
to use formal mathematics to specify the behaviour of the system, both the
software developer and more importantly the customer both have to
conversant in Z or VDM. This is often unrealistic and customers will not
commit themselves to a legally binding specification they cannot understand.

2. The cost and time of specifying in Z or VDM is very large compared to less
formal techniques.

3. Even if the system is specified in Z or VDM, there is no guarantee that the
implementation of that system will be as rigorously performed. Indeed there
is little chance that the implementation can even be formally checked against
its specification.

4. If safety is the ultimate overriding concern, then there are many other factors
to consider beside the software. For example, can you prove that the CPU in
your computer behaves exactly in accordance with its specification at all
times? What about the compiler and OS, do you have faith in them?

Paul
overload,

Paul
data

Paul
specified

Paul
range,

Paul
falls

Paul
heap

Paul
incorrectly specified,

Paul
miss-understood

Paul
incorrectly implemented.

Paul
Safety-

Paul
Critical

Paul
component

Paul
system

Paul
behaviour

Paul
failure),

Paul
implemented

Paul
specfication.

Paul
specifying

Paul
software

Paul
requirements,

Paul
software

Paul
developer

Paul
customer

Paul
cost

Paul
time

Paul
specified

Paul
implementation

Paul
formally

Paul
checked

Software Engineering Topic 1 Page 7

6. Many Mechanical and Electrical systems often have well defined working
boundaries and are constrained to work within them

This makes it relatively easy for their designer to assess the suitability of their design
for its intended purpose. For example, the mechanical designer of an engine for a car
need only consider the interface between the engine and gearbox. That is, there is a
well-defined, explicit specification about which the designer can explore different
solutions.

In contrast a great deal of software is often designed with few and sometimes
no boundaries placed upon it, restricted only by the ability of an individual to
interpret/specify them, which makes designing such software to cope with all
eventualities extremely difficult. Here are some classic examples: -

1. NORAD, the American computerised nuclear defence program, during it’s 1st 24

hours of service, was taken to its highest state of alert (DEFCON 5), one step
away from a launch, because software used to detect incoming threats had
mistaken the earth’s moon, emerging over the horizon as an all-out soviet nuclear
attack.

2. When the UK developed it’s first intelligent ‘seek and destroy’ intelligent

torpedo, the programmers thought they were being clever when they built
safeguards into the software that would automatically self-destruct the torpedo if
it ever did a 180 degree turn and started heading back towards the submarine that
launched it. Unfortunately, one of the 1st launches of the new torpedo resulted in
it getting stuck in the subs tubes, so the captain turned around and headed back to
port!!!

3. More recently (1999), an airbus A320 aeroplane overshot the runway coming in

to land in monsoon conditions (i.e. extremely heavy rain). This particular type of
aircraft uses computer controlled reverse engine thrust to assist in bringing the
aircraft to a halt. However, when the plane touched down, there was so much
water on the runway that the tyres immediately aqua-planned and failed to spin in
the normal fashion. This led the computer to believe that the plane was still in the
air and refused the pilots request to engage reverse thrust!!!

Although we can laugh at these failures, they highlight the very real problems that
can and all too often do arise when software designers are forced to design systems
which are too open-ended or lacking adequate specifications.

As evidence of this, try defining precisely and unambiguously the process of making
a cup of coffee in the morning. Your specification should consider all possible
problems and provide a solution to deal with each. Now compare this with a friend’s
solution.

Paul
suitability

Paul
intended

Paul
purpose.

Paul
reverse engine thrust

Paul
open-ended

Paul
lacking adequate specifications.

Paul
no

Paul
boundaries

Paul
1.

Paul
2.

Paul
3.

Software Engineering Topic 1 Page 8

A Comparison of Software Production vs. that of other Engineered Products

Software then has characteristics that are considerably different from those of
hardware:

1. Software is developed. It is not manufactured, in
the classical sense.

Although some similarities exist between software development and hardware
manufacture, the two activities are fundamentally different.

• In both activities, high quality is achieved through good specification and
design, but the manufacturing phase for hardware can introduce quality
problems that are non-existent (or easily corrected) for software.

• Both activities are dependent on people, but the relationship between ‘people

applied’ and ‘work accomplished’ is entirely different. Virtually 100% of the
effort/manpower required to produce quality software is concentrated in the
design. The reproduction of software can be made virtually 100% accurate.

In comparison, hardware is much more difficult to reproduce requiring
factories and personnel plus the purchase and delivery, assembly and storage
of expensive raw and finished materials and quality assurance
programs/personnel to maintain the quality of production.

• Software costs are concentrated in the design and engineering of the first

product. This means that software projects cannot be managed as if they were
manufacturing projects. The cost of producing duplicate software is trivial
compared to the cost of producing the 1st product, further more software can
be reproduced cheaply and effectively with little cost or manpower.

In comparison, the cost of the producing hardware lies principally in the
manufacturing and purchasing cost of the raw materials and the
factory/personnel required making the product.

The above has important implications. For example, take Car production. The cost of
producing the robots, presses, paint shops, production lines, quality assurance
programs etc. that are put in place to manufacture just one model of a car are
staggering in comparison to the cost of the design itself. This puts enormous pressure
on the designer to get it right ‘first time’ as making even minor changes to the design,
or recalling a model for modification once production has started can be cripping

Contrast this to the approach of the software designer, who all too often adopts the
attitude that changing or updating the product is cheap, or even free if they download
the service pack from a web site. Some even think that they are doing the customer a
‘favour’ by updating the product from time to time!!

Paul
first

Paul
product.

Paul
quality

Paul
non-existent

Paul
software.

Paul
hardware

Paul
difficult

Paul
reproduce

Paul
hardware lies principally in the
manufacturing

Paul
purchasing

Paul
changing

Paul
updating

Paul
cheap,

Paul
free

Paul
service

Paul
pack

Paul
favour’

Paul
good

Paul
specification

Paul
design,

Paul
people,

Paul
design.

Paul
This puts enormous pressure
on the designer to get it right ‘first time’ as making even minor changes to the design,
or recalling a model for modification once production has started can be enormous.

